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Parasitoid and host nutritional 
physiology in behavioral ecology

Michael R. Strand and Jérôme Casas

Abstract

Nutrient acquisition and allocation critically impacts the fitness of all organisms.
However, distinguishing between competing hypotheses about metabolic
strategies requires mechanistic details on the physiological requirements and
constraints under which the organism exists. Parasitoids acquire nutrients 
during both their larval stage and as adults. In this chapter, we first explore 
differences in the acquisition strategies of koinobionts and idiobionts and 
the physiological adaptations parasitoids have evolved to manipulate host 
nutrient stores for their own fitness. We then relate these larval strategies to 
nutrient acquisition strategies during the adult stage by revisiting the link
between reproduction (ovigeny index), host-feeding behavior, and oosorption. We
conclude our discussion by examining how nutritional interactions potentially
impact on other aspects of parasitoid and host fitness. Overall, we argue that
the combination of top-down evolutionary approaches with bottom-up insights
into physiology and molecular mechanisms offers new avenues for under-
standing the complex syndromes of the idiobiont and koinobiont life history
dichotomy.

6.1 Introduction

Classic life history models assume that fundamental trade-offs will arise between reproduc-
tion and determinants of survival when resources are limiting. Many factors can constrain
resource availability including ecological conditions and the structure of an organism’s
life cycle. Parasitoids acquire nutrients as larvae by feeding on hosts (capital resources).
They can also acquire additional nutrients as adults by feeding on non-host resources like
nectar and/or by host feeding (income resources) (Jervis & Kidd 1986, Heimpel & Collier
1996). Most behavioral and population dynamics models measure the quality of host resources
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using a single currency such as size (Charnov & Skinner 1984, Mangel 1989). Parasitoid
nutrient reserves are also represented usually by single currencies like the number of eggs
available for oviposition (egg load) to predict parasitoid foraging decisions or population-
level effects on hosts (Mangel 1989, Chan & Godfray 1993, Briggs et al. 1995, Collier 1995,
Křivan 1997, Heimpel et al. 1998, Rosenheim et al. 2000). In reality, nutrient acquisition and
allocation is much more complex, because individual nutrients can be limiting for specific
functions, such as reproduction, even when energetic resources are not (Raubenheimer 
& Simpson 1999, O’Brien et al. 2002). Changes in diet or metabolism can also affect how
nutrients from different life stages are used (Zera & Zhao 2003, O’Brien et al. 2004, Min
et al. 2006).

Hosts face similar complexities in nutrient acquisition and allocation. They also face
potentially important fitness trade-offs from investing in defense against attack by para-
sitoids and pathogens relative to reproduction and other maintenance needs (see Chapter 14
by Kraaijeveld and Godfray). Defense against internal parasitoids depends primarily on
the ability of the host’s immune system to kill the parasitoid egg or larva after oviposition
(Strand & Pech 1995, Lavine & Strand 2002, Hoffmann 2003, see also Chapter 14 by
Kraaijeveld and Godfray). Host–parasitoid population dynamics are also affected by 
variation in host resistance, which can arise as a consequence of genetic differences among
individuals or from environmental factors such as nutritional state (Chesson & Murdoch
1986, Hochberg 1997, Sasaki & Godfray 1999, Godfray 2000, Carton et al. 2005).

In this chapter we examine the effects of nutritional physiology on the behavioral 
ecology of parasitoids and their hosts. We begin by outlining the relationship between life
history and nutrient dynamics in parasitoids. We then explore the role of nutritional state
in immunity and the potential costs of defense to hosts (see also Chapter 14 by Kraaijeveld
and Godfray). We finish by arguing that the combination of top-down ecological, popu-
lation, and evolutionary studies combined with bottom-up insights from physiology 
and molecular biology offers new avenues for understanding the behavioral ecology of 
parasitoids.

6.2 Background nutritional physiology

Carbohydrates, proteins, and lipids are the primary nutrient classes and the fat body is
the main site of nutrient storage and metabolism for all insects. The fat body stores 
carbohydrates as glycogen and lipids as tryglycerides (Clements 1992, Candy et al. 1997).
The fat body also synthesizes many key molecules including the lipoprotein vitellogenin,
the primary constituent of yolk, and trehalose, which is a key sugar in hemolymph. Insect
hemolymph is another site of nutrient storage and usually contains high levels of free amino
acids, storage proteins, and sugars required for maintenance, metamorphosis, and repro-
duction. Regulation of nutrient homeostasis (i.e. nutrient sensing) in insects, as in verte-
brates, occurs primarily through the insulin and the target of rapamycin (TOR) pathways
(Britton et al. 2002, Scott et al. 2004). Insulin signaling is a hormone-based system that
regulates metabolism and organismal growth while the TOR pathway responds to nutrient
levels to regulate protein synthesis and cell growth (Oldham et al. 2000, Zhang et al. 2000,
Wu & Brown 2006). Reciprocally, inhibition of the TOR pathway during starvation induces
autophagy, whereby non-essential proteins and organelles are recycled to generate amino
acids for other purposes (Scott et al. 2004).
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6.3 Nutrient acquisition and allocation by parasitoids varies 
with life history

Nutrient acquisition and allocation strategies of parasitoids are strongly linked to two com-
ponents of life-history: (i) egg production and (ii) mode of parasitism. For the former,
Flanders (1950) divided parasitoids into pro-ovigenic species that emerge as adults with
a fixed complement of mature eggs and synovigenic species that continue to mature eggs
during the adult stage. Pro-ovigenic parasitoids allocate nutrient reserves during the adult
stage to maintenance, while synovigenic parasitoids confront the decision of whether to
allocate reserves to egg production, maintenance, or both (Jervis & Kidd 1986, Heimpel
& Collier 1996, Rivero & Casas 1999, Papaj 2000). Jervis et al. (2001) noted that para-
sitoids actually exhibit a continuum of ovigeny that can be indexed. Relatively few species
are strictly pro-ovigenic (ovigeny index = 1) and synovigeny ranges from species that emerge
with most eggs mature to species that emerge with no mature eggs (ovigeny index = 0).
Askew and Shaw (1986), in contrast, divided parasitoids into idiobionts, whose hosts cease
development after parasitism and koinobionts, whose hosts remain mobile and continue
to grow. All idiobionts are either ectoparasitoids that paralyze their hosts or endopara-
sitoids that parasitize sessile host stages like eggs or pupae. Most koinobionts in contrast
are endoparasitoids that parasitize insect larvae.

Egg production and mode of parasitism strategies are also interrelated. Parasitoids 
that exhibit extreme synovigeny, for example, are all idiobionts that produce yolk-rich 
(anhydropic) eggs and low ovigenic indices, whereas koinobionts tend to produce yolk-
deficient (hydropic) eggs and have high ovigenic indices (Mayhew & Blackburn 1999). Since
idiobionts parasitize hosts of static size, selection favors oviposition on larger, late-stage
hosts, which suffer lower mortality rates and thus select for larger egg sizes and concomitantly
lower fecundities (Price 1974, Mackauer & Sequeira 1993, Godfray 1994). Most idiobionts
are also ectoparasitoids whose eggs require a pre-packaged yolk source for development.
Reciprocally, the ability of koinobionts to attack hosts of variable size favors parasitism of
early stage larval hosts that suffer higher mortality rates and thus, favor smaller eggs and
larger fecundities. The production of smaller, yolk-deficient eggs is also probably favored
in koinobionts by: (i) endoparasitism and access to host nutrients for embryonic devel-
opment; and (ii) the inability of koinobionts to feed on the mobile, often aggressive, hosts
they attack (Strand 2000, Pennacchio & Strand 2006).

6.4 Parasitoid nutrient dynamics

With these life history correlations in mind, it is not surprising that most idiobionts are
able to lay a few eggs after adult emergence, but further increases in longevity and egg
production require host feeding and/or access to non-host resources like nectar (Jervis &
Kidd 1986, Heimpel & Collier 1996, Rivero & Casas 1999). Using biochemical methods
and dietary stable isotope signatures, more recent studies have also begun to unravel the
contribution of larval and adult diets to parasitoid nutrient budgets. Nutrients that are
acquired during the larval stage and used during the adult stage are referred to as capital
reserves. Studies of the ectoparasitic idiobiont Eupelmus vuilleti indicate that adult females
emerge with high capital reserves of lipid, sugars, and glycogen. Host and sugar feeding
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by adults provides additional protein and carbohydrates but little or none of these nutri-
ents are converted to lipid suggesting an absence of lipogenesis during the adult stage of
E. vuilleti (Giron & Casas 2003). Lipid ingested by host feeding is also inadequate to replace
capital lipid reserves from the larval stage (Giron et al. 2002, Casas et al. 2005). In con-
trast, the endoparasitic koinobiont Venturia canescens is weakly synovigenic, produces 
small eggs with little yolk, and does not host feed. This species emerges with limited cap-
ital reserves, is stored mainly as lipids, and possesses almost no reserves stored in eggs
themselves (Casas et al. 2003). Carbohydrate levels increase rapidly in V. canescens from
feeding on nectar and/or honeydew, yet, similar to E. vuilleti, lipid reserves do not (Casas
et al. 2003).

Strong synovigeny has previously been associated with weak capital reserves compared
to weak synovigeny or pro-ovigeny (Jervis et al. 2001), yet the preceding data suggest this
is not the case. Instead, nutrient reserves must be viewed in terms of individual nutrient
classes (Section 6.6). Carbohydrates, for example, obtained by adults from host or non-
host sources enhance longevity and survival of both idio- and koinobionts. Carbohydrates
also appear to be the only nutrient used for flight by Hymenoptera and this nutrient class
is rapidly depleted if adults are starved (Vogt et al. 2000, Harrison & Fewell 2002).
Proteins and carbohydrates obtained by idiobionts through host feeding increase the 
production of yolk-rich eggs by allowing females to invest less capital lipid reserves in 
maintenance functions. In contrast, neither E. vuilleti nor V. canescens is able to synthesize
new lipids from carbohydrates as adults, making lipids acquired during larval develop-
ment a non-renewable resource that ultimately constrains egg production (see below).
Comparative studies have further suggested an absence of lipogenesis during the adult stage
may exist across all Hymenoptera (Ellers 1996, Rivero & Casas 1999, Olson et al. 2000,
Rivero et al. 2001, Rivero & West 2002). If so, we would hypothesize that constraints on
lipid reserves are a major factor influencing the foraging behavior and oviposition strate-
gies of parasitoid wasps.

Given that koinobionts are unable to host feed, we would also suggest that many species
have evolved compensatory strategies for enhancing the acquisition of nutrients during
larval development that are lacking in the adult diet. This would include lipids, sterols,
and non-essential amino acids that are deficient in nutrient sources available to adults like
nectar (O’Brien et al. 2002, 2004). Notably, many larval endoparasitoids induce dramatic
reductions in weight gain and inhibit metamorphosis by hosts (Harvey & Strand 2002,
Beckage & Gelman 2004, Pennacchio & Strand 2006). These developmental alterations are
also associated with qualitative and quantitative alterations in how carbohydrates, proteins,
and lipids are allocated to host tissues (Thompson 1993, Thompson & Dahlman 1998,
Pennacchio & Strand 2006). Key changes include large increases in host hemolymph 
carbohydrate levels and alterations in protein composition including a loss of major 
storage proteins like arylphorin (Dahlman & Vinson 1980, Thompson 1982, Vinson 1990,
Shelby & Webb 1994). Reductions in triglyceride and glycogen deposits in fat body and
increases in hemolymph protein, amino acid, and acyl-glycerol levels have also been reported
in aphids parasitized by aphidiine braconids (Pennacchio et al. 1995, Rahbé et al. 2002).
Although idiobionts have traditionally been thought to manipulate host physiology less
than koinobionts (Askew & Shaw 1986, Jervis et al. 2001), recent studies have suggested
this generality may also be inaccurate (Pennacchio & Strand 2006). For example, the 
venoms produced by idiobionts are well known for their paralytic activity. However, 
idiobiont venoms also cause several endocrine and metabolic alterations that increase 
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carbohydrate, protein, and lipid levels in host hemolymph that is the primary resource
consumed by developing parasitoid larvae (Strand 1986, Rivers & Denlinger 1994, Weaver
et al. 2001).

The molecular mechanism(s) underlying these metabolic alterations remain only
superficially understood (see Thompson 1993, Beckage & Gelman 2004, Pennacchio & Strand
2006). Nonetheless, Pennacchio and Strand (2006) concluded that their overall effect is
to redirect energetic resources away from the host and toward the developing larval stage
parasitoid so as to enhance capital reserves. As discussed above, koinobionts almost
always juvenilize their larval stage hosts in a manner that increases nutrient availability 
in the hemolymph and disrupts nutrient uptake by host tissues. Parasitoids that attack
nymphal or adult hosts confront a very different host environment but the strategy of 
manipulating host nutritional physiology remains similar. This is well illustrated by aphid 
parasitoids like Aphidius ervi. The primary metabolic sink of its host is reproduction and,
not surprisingly, A. ervi produces gene products that suppress host reproduction (Pennacchio
et al. 1995, Digilio et al. 2000). Thus, the primary adaptive significance of altering host
endocrine physiology and reproduction is likely metabolic with arrested development or
inhibition of metamorphosis being indirect consequences of the parasitoid redirecting host
nutritional resources. Redirecting nutrient reserves away from the host and toward the
parasitoid also potentially reduces immune defenses, which could further favor parasitoid
survival (see below).

6.5 Nutrient dynamics and immune defense by hosts

Host insects similarly confront resource constraints that can affect their life history. In
Lepidoptera, for example, sugar feeding by adults increases longevity and fecundity, but
essential amino acids are acquired primarily from the larval diet, which places an upper
limit on the use of adult dietary resources for reproduction (O’Brien et al. 2002, 2004).
Even in host insects with similar larval and adult diets, resource allocation of nutrients
acquired during the larval and adult phase can vary with time or by tissue. Dietary sucrose
and yeast provides virtually all of the carbon Drosophila melanogaster allocates to eggs, but
the origin of these sugar carbons shifts from larval sources in the first clutches of eggs laid
by a female to almost exclusively adult sources in subsequent clutches. In contrast, more
than 30% of sugar carbons allocated to adult somatic tissues derive from larval reserves,
suggesting that resources acquired during different life stages are allocated differently to
maintenance and reproduction (Min et al. 2006).

Since parasitoids and pathogens are often the most important mortality factors facing
insects, immune defense has long been recognized as a critically important maintenance
function (see Chapter 14 by Kraaijeveld and Godfray). Investment in defense also has 
possible fitness costs and trade-offs with reproduction and other needs. Such trade-offs
have been viewed as either a plastic response, usually referred to as the cost of using the
immune system or as a co-evolved trait viewed as the cost of having an immune system
(Schmid-Hempel & Ebert 2003, see also Chapter 14 by Kraaijeveld and Godfray). The innate
immune response of insects consists of both cellular and humoral components (Strand 
& Pech 1995, Lavine & Strand 2002, Hoffmann 2003). Some defenses, like melanization,
are non-specific and have activity against a range of parasites, while other defenses are
directed to a restricted set of parasite species or types. The primary defense response against
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parasitoids is encapsulation, which involves the recognition and binding of hemocytes 
to the parasitoid egg or larva. Binding of additional hemocytes ultimately results in a 
multicellular capsule that fully envelops the parasitoid (see Chapter 14 by Kraaijeveld 
and Godfray). The encapsulated parasitoid is then likely to be killed by a combination of
asphyxiation and toxic compounds produced by the melanization pathway that hemocytes
often release in mature capsules (Wertheim et al. 2005). Several immune pathways regulate
encapsulation and associated processes such as hemocyte proliferation and activation of the
phenoloxidase cascade, which regulates melanization (Irving et al. 2005, Wertheim et al.
2005, see Chapter 14 by Kraaijeveld and Godfray). These include the Toll and immune
deficiency (Imd) pathways that also regulate defense responses to microbial infection and
the JAK-STAT (Janus kinase and signal transducers) and GATA signaling pathways that
regulate hematopoiesis and antiviral defense (Hoffmann 2003, Agaisse & Perrimon 2004).
These pathways and the effector responses they regulate together comprise the insect’s
inflammatory response to infection.

6.5.1 Is immune defense costly?

If there are life history costs associated with resistance, then the benefit to hosts of invest-
ing in immune defense will be determined by the risk of attack, which will vary in both
space and time (see also Chapter 14 by Kraaijeveld and Godfray). Resistance would also
be expected to vary within and between host populations and could be affected by genetic
as well as environmental factors. There is considerable evidence for host variation in immune
resistance to parasitoid attack both between (Kraaijeveld et al. 1998, Hufbauer 2002, Carton
et al. 2005) and within (Henter & Via 1995, Kraaijeveld & Godfray 1997, Fellowes 1999,
Kraaijeveld & Godfray 1999, Stacey & Fellowes 2002, Gwynn et al. 2005) host populations
(see Chapter 14 by Kraaijeveld and Godfray). A few recent studies have also suggested that
immune resistance to parasitoids has fitness costs for survival and future reproduction.
For example, selection for increased immune resistance in D. melanogaster to the parasitoids
Asabara tabida and Leptoplinina boulardi results in enhanced encapsulation of parasitoids,
but at the cost of a reduction in the ability of resistant hosts to compete for food
(Kraaijeveld & Godfray 1997, Fellowes et al. 1999, see also Chapter 14 by Kraaijeveld and
Godfray). Aphids usually do not eliminate parasitoids by encapsulation but other immune
factors in hemolymph prevent parasitoids eggs from developing. This immune response
also appears to have a cost, because pea aphid clones (Acyrthosiphon pisum) with higher
immune resistance to the parasitoid Aphidium ervi have lower fecundity than susceptible
clones (Gwynn et al. 2005). Outside of the parasitoid literature, other evidence for the 
cost of immune defense includes reductions in survival and male mating success (Rolff & 
Siva-Jothy 2002, Schmid-Hempel & Ebert 2003). While the examples cited here provide
evidence of trade-offs between immunity, reproduction, and/or other maintenance func-
tions, additional comparative data and experimentation are also needed to determine whether
the costs of immune defenses are broadly significant among different host–parasitoid 
associations.

6.5.2 Is resistance affected by nutrient dynamics?

Evidence that immune defense is energetically expensive in insects and other organisms
derives from the observation, in diverse species, that activation of the immune response
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increases mortality or has other measurable fitness consequences when resources are lim-
ited (Rolff & Siva-Jothy 2003, Schmidt-Hempel & Ebert 2003). The prevalence of induced
versus constitutive responses in immunity following parasite infection is also thought 
to have evolved, in part, to avoid the energetic cost of permanent defense. Support for
this latter idea derives primarily from genetic modification of immune traits or selection
studies. For example, mutations that constitutively activate systemic acquired resistance
in plants increase resistance to certain pathogens but at the cost of reduced size and seed
production (Heidel et al. 2004). Persistent activation of the pathways regulating anti-
microbial peptide production in D. melanogaster also reduces fecundity presumably due
to resources invested in defense molecules being unavailable for egg production (Zerofsky
et al. 2005). As mentioned above, D. melanogaster selected for resistance to parasitoid attack
produce more hemocytes but at the cost of reduced competitive ability under conditions of
high resource competition (Kraaijeveld & Godfray 1997, Kraaijeveld et al. 1998). Surprisingly
though, flies selected for increased competitive ability under crowding do not exhibit reduced
resistance to parasitoids (Sanders et al. 2005).

Other evidence for the energetic cost of immune defense stems from the observation
that stress, including high temperature, starvation, or persistent infection, increases sus-
ceptibility to infection due to a presumed reduction in resources available for immunity
(Boulétreau 1986, Feder et al. 1997, Faggioni et al. 2000, Yang & Cox-Foster 2005). Insect
resistance to parasitoids can also vary by age with younger larvae or older adults usually
being most susceptible to infection (Salt 1970, Washburn et al. 2001, Hillyer et al. 2005,
Zerofsky et al. 2005). This increased susceptibility could be due to age-dependent changes
in the function of the immune system, lower nutrient reserves for investment in defense,
or both.

Outside of insects, several linkages have also been identified between metabolic and immune
pathways (Lochmiller & Deerenberg 2000, Rolff & Siva-Jothy 2003, Matarese & La 
Cava 2004). Pro-inflammatory cytokines and persistent infection by pathogens, such as
tuberculosis, triggers hyperglycemia in mammals due to insulin insensitivity and release
of glucocorticoids (Andersen et al. 2004). This shift in nutrient allocation affects both immune
cell function and the production of acute phase proteins, but at the cost of reduced skeletal
muscle mass and impaired glycogen synthesis. As noted above, parasitoids induce a sim-
ilar response in host insects (Pennacchio & Strand 2006). Starvation in insects is also known
to alter both TOR and immune pathway signaling (Gordon et al. 2005).

Lastly, a few studies have documented genetic differences in metabolic enzymes that
have distinct pleiotropic effects in different life stages that could result in trade-offs between
defense, reproduction, and other maintenance functions. For example, the glycolytic
enzyme phosphoglucose isomerase (Pgi) plays a key role in glucose metabolism and the
resupply of energy (ATP). Studies in several insects indicate that different Pgi genotypes
exhibit variation in their enzyme kinetic and thermal stability properties that correlate with
variation in flight performance, adaptation to particular microhabitats, and fecundity (Watt
1992, Hanski & Saccheri 2006, Giron et al. 2007). Lepidotopteran larvae feeding on diets
with high concentrations of plant toxins have also been reported to suffer higher rates of
parasitism due potentially to the energetic costs of detoxification reducing resources avail-
able for immune defense (Gentry & Dyer 2002). In contrast, other studies have found little
or no evidence that processing of allelochemicals imposes significant energy demands on
insect herbivores, making it unclear whether increased vulnerability to parasitoids is 
actually due to metabolic trade-offs (Appel & Martin 1992).
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6.6 The power of a complete nutrient budget

As shown above, nutrient acquisition and allocation clearly impact on fecundity and sur-
vival functions such as immune defense in both parasitoids and hosts. Yet, these linkages
are also founded more on logical deductions than hard data, indicating that this field of
study would strongly benefit from additional experimental data. The deficiencies in avail-
able empirical data in specific host–parasitoid study systems is also well illustrated in the
theoretical literature by the types of dynamic models that have been developed to predict
the behavior and host usage patterns of parasitoids. These models are often very detailed
and strive for realism. However, resolving differences in the predictions generated by 
different models has also been noted to be ‘essentially impossible’, because of a lack of
physiological knowledge about nutrient dynamics in parasitoids (Clark & Mangel 2000).
Similarly, while several lines of evidence suggest immune defense is energetically expen-
sive to hosts, the precise trade-offs between defense, reproduction, and other fitness traits
remain largely undefined.

To address these challenges, we conclude that quantified energy and nutrient budgets
for both parasitoids and hosts are the only way to make sense of the myriad of evolu-
tionary scenarios that can arise. The key advantage to this approach is that it enables 
us to assess the relative benefits and costs of different nutrient acquisition and allocation
strategies. Building complete budgets is not an easy task but it is doable, even in small
parasitoids. This is illustrated by the comprehensive total energy budget recently devel-
oped for the idiobiont Eupelmus vulleti that we discussed earlier in this chapter (Casas 
et al. 2005, see above). For this analysis, the sugar, glycogen, protein, and lipid reserves of
single females at birth and death were quantified, as was daily maintenance. Each host
feeding and oviposition event, along with the nutrient amounts acquired and invested in
eggs, was recorded. The time of death was also used to compare model predictions in the
presence and absence of hosts. In the absence of host feeding, nutrients derive from 
larval (capital) reserves. The availability of host feeding, on the other hand, delivers large
quantities of sugars and proteins but very little lipid (Fig. 6.1). In terms of allocation, 
carbohydrates are the main energy source for maintenance functions and the decline in
carbohydrate reserves mirrors the time of death. When adults can host feed but have no
supplemental sugar source, proteins and lipids are heavily used for maintenance, which
in turn allows females to use capital lipid reserves acquired during larval feeding for egg
production (Fig. 6.2). Providing adults both sugar and hosts increases longevity, reduces
host feeding, and produces higher realized fecundities because most capital lipid reserves
are used for egg production (Fig. 6.2).

Overall, these data indicate that E. vuilleti is best described as a capital breeder for one
nutrient class (lipids) and is an income breeder for another (carbohydrates). The nutrient
budget developed for this species also illustrates the inadequacy of a term such as ‘energy’
for describing nutrient reserves and the importance of recognizing that different nutrient
classes are not used equivalently for reproduction and maintenance. Even categories 
such as protein, lipid, and carbohydrate are potentially too coarse, as illustrated recently
by Mondy et al. (2006), who found that E. vuilleti is actually an income breeder for at
least one subclass of lipids (sterols), because capital sterol reserves appear sufficient to pro-
duce only 30% of the total number of eggs females normally lay when given access to hosts 
and sugar.
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Lipids

Carbohydrates

Proteins

Nutrient acquisition
without host feeding

Nutrient acquisition
with host feeding

Nutrient allocation
with host feeding

Fig. 6.1 Lifetime acquisition and allocation of nutrients in Eupelmus vuilleti
when adults are without or with hosts for host feeding. Larval reserves of lipid,
carbohydrate, and proteins are indicated in black. Nutrients gained through host
feeding are indicated in white. When wasps are able to host feed, most lipid
reserves still derive from the larval stage, whereas the majority of carbohyd
rates and proteins are acquired from host feeding. This indicates that E. vuilleti
is a capital breeder in terms of lipids, but is an income breeder in terms of
carbohydrates and protein. Allocation of lipids, carbohydrates, and proteins to
maintenance functions is indicated in light gray, while allocation to eggs is
indicated in dark gray.

Lipids

Proteins

Nutrient
acquisition

Nutrient
allocation

With
sugar

Without
sugar

With
sugar

Without
sugar

Fig. 6.2 Lifetime acquisition and allocation of nutrients in Eupelmus vuilleti when
adults can host feed with or without supplemental sugars. Note that acquisition of
additional carbohydrates during the adult stage enables females to increase the
allocation of lipids and protein to egg production. Sugar acquisition also reduces
host-feeding, which results in a decrease in protein reserves.
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The development of complete nutrient budgets can also be used to tackle difficult 
questions about the relative costs and benefits of particular physiological functions and
behaviors. For example, egg resorption is a common phenomenon in parasitoids and other
insects that is usually explained as a strategy for recovering nutrients under conditions of
resource limitation and reallocating them to maintenance (Bell & Bohm 1975). A few studies
with parasitoids have reported a positive correlation between the number of eggs resorbed
and extended longevity (Collier 1995, Heimpel et al. 1997). Yet, quantitative data with E.
vuilleti indicate that single eggs contain less than 10% of the protein, lipid, and carbohy-
drate needed for daily maintenance, suggesting a female cannot extend its longevity even
a full day by reabsorption of its entire egg complement. Thus, egg reabsorption is either
of value under only the most extreme conditions of resource limitation or it is important
for other, currently unrecognized, functions such as oocyte survival. For hosts, a complete
nutrient budget could also provide important insights into the actual cost of immune defense
against particular parasitoids and trade-offs between processing allelochemicals and
defense against parasitoids. The role of different nutrient classes in the metabolic costs of
the immune system is only beginning to be characterized in mammals (Lochmiller &
Deerenberg 2000) and is almost completely unknown in insects.

6.7 Nutrient dynamics and the future of behavioral and population
ecology

The last decade has produced a wave of exciting new data on nutrient dynamics of 
parasitoids and some hosts, but we are not yet at a stage where a quantitative fitness gain
can be ascribed to a single nutrient acquisition or allocation decision. Nonetheless, such
data are now possible to generate and are likely to enter the literature in the near future.
It is at the population level that the state of the art is more worrisome. Demanding quan-
titative tools on one hand and a general decrease in the number of researchers studying
population dynamics on the other is reducing progress in this area, despite its broadly
acknowledged importance to the study of parasitoid–host relationships. Increased emphasis
on physiological realism has pervaded host–parasitoid population dynamics models dur-
ing the last decade but predictions about the stability of these interactions still require details
on nutrient acquisition and allocation that are not available in most study systems. For
example, recent models predict that allocation of nutrients gained from host feeding to
both maintenance and reproduction will result in destabilizing population dynamics
(Kidd & Jervis 1991a,b, Briggs et al. 1995, Křivan 1997). Models also predict destabilizing
dynamics if eggs are reabsorbed for maintenance purposes (Briggs et al. 1995). In contrast,
if the parasitoid death rate is a function of nutrient reserves, then a failure to meet main-
tenance requirements is predicted to result in stabilizing dynamics. These models, there-
fore, predict that parasitoid–host systems can shift from population stability to instability
depending on how nutrients acquired by host feeding are allocated and the relationship
between death rate and reserves. To date, the physiologically structured host–parasitoid
population models of Murdoch et al. (2003) provide the most thorough groundwork on
the interface between physiology and population dynamics. Unfortunately, parasitoids, like
Aphytis sp., for which we have a good grasp of population dynamics, are poorly under-
stood from the perspective of nutritional physiology. In other words, inadequate detail
about the nutritional physiology of these wasps precludes different model predictions from
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being thoroughly tested. In addition, while resolving questions of stability and instability
are the bred and butter of population dynamicists, these issues are usually of little interest
to physiologists and molecular biologists. The challenge then is how to engage these sub-
organismal biologists, who can generate quantitative measures of specific nutrient classes
and their trafficking, on the importance of producing data that could help distinguish between
competing model predictions that lead to opposite dynamic outcomes. This challenge also
holds in the study of host immune resistance and parasitoid virulence, where understand-
ing of how variation in non-genetic factors, like nutritional state or the coevolutionary
dynamics that maintain genetic variation requires details on the physiological processes
involved.

Behavioral and population ecologists would argue that the best route to deciding which
physiological processes are most relevant to the foraging and population biology of a 
parasitoid would be to work in a top-down fashion using dynamic programming models
for behavioral decisions or physiologically structured models for population dynamics. Model
exploration and sensitivity analysis enable one to identify the relevant processes, i.e. those
for which a small change in parameter values or function has a major impact. This can
then be followed by experimental studies that generate the necessary physiological data
for testing model predictions. Physiologists and molecular biologists, on the other hand,
would point to the power and value of bottom-up approaches of characterizing genetic
mutants, conducting selection studies, and undertaking functional genomic analyses to 
identify genes of interest and to understand how variation in specific traits impacts on
function. The truth is that both strategies have value in enhancing our understanding 
of parasitoid–host interactions. This chapter even provides evidence that physiologists/
molecular biologists and ecologists/population biologists are capable of working together
toward a common goal. We hope that the next decade will experience a move from 
plausible logical arguments about fitness gains under different ecological scenarios to 
quantitative predictions matched by experimental data of equivalent precision.
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